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ABSTRACT

We investigate the excitation and propagation of the three dimensional

electromagnetic field over an infinite corrugated plane which is approximated

by an anisotropic impedance boundary condition. Emphasis is placed upon

effects of surface anisotropy which are not evident in two dimensional treat-

ments. In particular we consider the excitation by a magnetic point dipole

in detail. It turns out that the fields are determined by a scalar wave

function which satisfies a mixed boundary condition involving a linear com-

bination of the wave function, its normal derivative and its second order

tangential derivative. The exact formal solution is first derived, and then

the radiated far field and the surface wave far field are evaluated

separately. Both the phase and the amplitude of the excited surface wave

are dependent upon the direction of observation. Numerical results are

given. The physical significance of this solution is discussed. A com-

parison is made between this problem and the theory of ship waves.



1. Introduction

In this paper we study the excitation and propagation of the three

dimensional electromagnetic field over an infinite corrugated plane which

may be approximated by an anisotropic impedance boundary condition. This

investigation is motivated by its potential application to scanning surface

wave antennas1. The fields produced by a magnetic point dipole will be

considered in detail. The boundary condition is. such that surface waves

are generated and it may be described mathematically as:

E = ZHz = R-iX) z

E =0 y =0

z

where the time dependence is assumed to be of the form e , and Z, R, and

X are the impedance, resistance, and reactance of the surface, respectively.

Insofar as surface waves are concerned, the most important case is such that

R and X are positive in sign and R is much smaller than X, i.e., Z is almost

purely reactive.

It should be noticed that any impedance boundary condition approximating

a dielectric coated surface is isotropic. The electromagnetic fields excited

by a uniform line source above an infinite reactive plane have been investigated

by Cullen-, and Friedman and Williams3 . The propagation of oblique surface

waves over a corrugated plane has been considered in the literature, but it

has not been treated three-dimensionally . The solution of our three di-

mensional problem will show the effect of the surface anisotropy which is not

evident in the two dimensional problems. The problem we treat may be formulated

by the use of a double Fourier transform. However, we reduce the problem to
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one involving only a single Fourier transform by introducing an auxiliary

function which is similar to those recently employed for several other

problems in diffraction theory415'6,7.

In section 2 we obtain the formal solution for the fields of a

magnetic point dipole oriented in the direction of corrugations and located

above a corrugated plane which is approximated by an anisotropic impedance

boundary condition. The dipole is first decomposed into phased line sources,

and the fields of the line sources are then synthesized into the dipole

fields. In section 3 the far-zone radiation field is evaluated by an algebraic

method involving asymptotic differentiation and the excited surface wave far field

is determined by applying the method of stationary phase. All the surface

wave characteristics which include the amplitude, the phase, and the ex-

ponential decay factor are functions of the direction of observation and the

surface reactance. In section 4 we summarize the peculiar properties of the

three dimensional surface wave, and present the surface wave power patterns

and the surface wave phase patterns. A comparison is also made between this

problem and the theory of ship waves.

2. The Formal Solution

In this section we proceed to study the electromagnetic field which

arises from a magnetic point dipole lying above the surface of a plane

characterized by an anisotropic impedance boundary condition. Consider a

magnetic point dipole located at the point X = 0, y = h, z = 0 (See Fig. 1)

and oriented in the direction of the z-axis. We are interested in the free

space region y ?: 0. The impedance boundary condition prescribed on the plane
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surface y = 0 is given by

(2.1) E -= 0 E = Z H =- i XH

where the impedance Z is supposed to be purely inductive and will support

surface waves. We now wish to solve the time reduced Maxwell's equations

subject to the prescribed singularity and boundary conditions.

If we assume the time dependence to be of the form e- it, the mono-

chromatic Maxwell's equations may be reduced to:

(2.2) { curlH --ie E

curlE = i W P - 8(x) 8(y - h) b(z) z

where E and 4 are the permittivity and magnetic permeability of free space.

Because of the boundary condition, the z-component of the electric vector

is absent in the fields and hence the field is completely determined by the

value of a scalar wave function f. We have

(2.3) E = curl f and H 1 curl curl f z

i.e.,

(2.4) E = 0, E = f Ey = .
z •y 6 x

and
1 •2

H 
f

x iw• C)X~z

(2.5) y a

H I k_ f
Th z f nio se ti2

The function f satisfies the equation
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(2.6) (v' +k 2 )f 5 8(x) 5(y - h) 8(z)

where V2 is the three-dimensional rectangular Laplacian, k is the

propagation constant of free space, and 5 is the Dirac Delta function.

The appropriate boundary condition may be deduced from (2.1) and (2.3):

(2.7) + X-1 (k2 f + ) = 0 when y = 0
.y W4 &z2

X
where .- is a positive number. The mathematical problem has been reduced

to that of solving the inhomogeneous wave equation (2.6) subject to the

mixed second order boundary condition given by (2.7). Furthermore, the far

field should satisfy the radiation condition.

Applying Fourier transform to eqs. (2.6) and (2.7), we obtain

(2.8) 62 + 2 +2) F : 5(x) 5(y-h)
& 2 ()Y2

(2.9) ý_ + L K2 F = 0

where the functions f(xy,z) and F(x,y,s) are related by the following Fourier

transform pair:

(2.10) f(x,y,z) 1 f F(xy,s) ei s dz

(2.11) F(x,y,s) = J f(x,y,z) e-i s z d z

and K2 = k2 - s2. Mathematically the transformed equations are a two-

dimensional inhomogeneous wave equation and a mixed first-order boundary con-

dition. Physically the point dipole has been decomposed into phased line



sources. We are going to first solve the problem of a phased line source

and then synthesize the line source fields into the dipole field.

The field of a phased line source may be analyzed either by the

Fourier transform method or by using another auxiliary function which is a

linear combination of the unknown wave function and its derivative. We

choose to employ the latter method because it gives another example of this

relatively new technique. Let us introduce the auxiliary function,

(2.1) G = (6 + X) F6y

where X = K2 . Then G satisfies the equation

(2.13) + --2 + K2 ) G - x) 5(x) l-(y-h)

and the simple homogeneous boundary condition

(2.14) G = 0 when y = 0

We first treat the case of positive X, i.e., s2 < k If the function

F is denoted by F1 when X is positive, then F1 can be found from G by integrating

(2.12) in the following manner.

- y

(2.15) F1 (x,y,x) = e y e l G(x,fs) dy + e-Xy T(x,s)

where T(x,s) is an arbitrary function of x and S, which except for certain

discontinuities in the derivative must be a homogeneous solution of (2.13).

The discontinuities must be adjusted so that F1 (X,y,s) meets the requirements

of the problem. This adjustment follows after eq. (2.18) below.
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By applying the operator X) to the unique Green's function

satisfying eq. (2.8) and vanishing at y = 0, we obtain the solution for

the auxiliary function:

(2.16) G = ( oo LVX - X H K-x+(

We substitute (2.16) into (2.15) and introduce the excited surface

wave terms to play the role of e-Xy T(x,s)

(2.17) F1 (x,Y,s) e - eY eXT !~H [1X2 o 1)2 + H [ ] }-2+( TI

SXe-J eXTI (1) Lx~T-h2 - H f~ (1) 21 ] ) d TI
e H V-TIhý - H0 [K/2+ Th2

+ C e-XY + i NK2 + ?, xj

Integrating by parts, we have

(2.18) F 1(x,y,s) = H l) [V-2+ (-h2]- H ) [K Jx + (-y+h2]

y
i e-Y f e"T' H(0  [K x2 +(T h ] d+ h

+ C e'XY+iJ IX2 xl



-7-

Now the surface wave amplitude C may be determined by requiring the

a1
continuity of CIx, across the line x = 0, i.e.,

(2.19) L T~im -F, (x > 0, y) - -6F (x < 0, y) =0

Substituting (2.18) into the jump condition (2.19) yields

(2.20) ,Oim - *X •e-X yfx2 41) l +2 + 1 + X2 dx

+i2C�VK 2 +X 2 e-y +i\/Kxalx } = 0

The limit of the integral in the above equation contributes only in the

neighborhood of Ti = - h. Hence

X K eJh -i +e H )2xx(2.21) CLimra 1 [Kx+ (71 + h) d
2( ) K2 +X2 x-i0 /x 2 + (] + h) 2  aT

21 +x-h- E

Using the asymptotic formula of Hankel function for small argument, we find

that
-h + C

(2.22) C = Lifm
Se + ,2 x.O + (1 i/ + (+j +1h)2

-h E+

Carrying out the integration gives

(2.23) C = - e-h
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Now we consider the case of negative X, i.e., s > k2  If the

function F is denoted by F2 when X is negative, then F2 may be found from

G by integrating (2.12) as follows:
00

(2.24) , F2 (x,y,s) -eXY f eX'11 G (xjs) dl

y

Substituting (2.16) into (2.24) and integrating by parts, we have

(2.25) F2 (x,y,s) -- - (y-h)2] x2 + (y + h)2l
"0 (1)

- 1e'kYf el H [K V+2 h)2] dli

y

The limits of integration in (2.24) have been so chosen that they

insure the convergence of the integral. Because IF2 is continuous across the

the line x = 0, no surface waves are excited in this case. Since the arguments

of Hankel Fnctions in (2.28) are imaginary, F2 will not give rise to a

radiation field.

The substitution of (2.18) and (2.25) into (2.10) completes the formal

solution of this problem. It Is difficult to evaluate the integrals exactly;

however, we shall obtain the far field expressions in the next section.

3. Determination of the Fhr Fields

In this section we determine the radiated far field and the surface

wave far field. We first treat the radiated far field by an algebraic method

involving asymptotic differentiation. This method has proved useful in two
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dimensional problems 4 'p' 6'7. It gives the radiated far field directly,

without intermediary use of the previously obtained complete solution.

Let us now introduce the following function

•f X 2c +•
(3.1) g +

Then g satisfies the equation

(3.2) (12 +k 2 ) g = [-6 +- (k2 +-2)1 6(x) 8 (y-h) b(z)

and vanishes when y = 0. The solution for g may be written down immediately:

(3 3 6 X (k 2 + ,2e i R1 e ikR ''_

(33 g-4• oh WPR R'1

where R' R - h sin sin ,

R' = x2 + (y + h) 2 + z2 z R +h sin 0 sin4 ,

R \/x2 +y 2 + z 2 , = tan-1  z, and tan- -F2_Y x
We may expect the far-zone radiation field of f to be of the form

(3.4) f = m (_,) eikR

R

Substituting (3.3) and (3.4) into (3.1),introducing polar coordinates, and

keeping terms of order 1 we obtain

([ik sin e sin ](k2ek2 cos2 e)e-ikh sin 0 sin 4
F + s s + 2k2 s2 ikhsinesin4 e___4R

(305) +L ik sin e sin + 2L (0-k cos /Je e )4 s nResi

~[i ksin 0sinq + L(k2 -k2 cos2 e) f
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(36) ~ [-ikh sinesin +isin n sin eikh sin sin•1

(3.6) 4 tR i sin t+ n sin esi

kX X
where n =- = 7 may be interpreted as normalized surface reactance.

Now we turn our attention to the surface wave far field. Substituting

the last term of (2.18) into (2.10) and using (2.23), we obtain the surface

wave field;

(3.) ff Xe -Xy +i s
2 -k 1 -e [ Xd

2 2

It should be remembered that X = K and K2 = k s . In order

to evaluate the integral by the method of stationary phase it is convenient

to make the following substitutions

(3.8) z = P cos *, lxi = P sin4', a a

(3.7) becomes
1

(3.9) fs f A(Vi, n, a) ei k P P%(, n, a)

-1

where

(3.10) A(W, n, a) ink i -- k(l2a2(y+h)
2•t '/_ -a + n2 (l-a 2 )2

and 
1

(3.11) P (7p,n,a) = a cos ?P + a - 2 + n2 (i- m 2)21' sin



when k p is sufficiently large

(3.12) fs = A( 2) i e i [k P P(n,a ]
k P 1I2p*na

It can be easily shon that P(?P,n,as) is always negative. The

stationary point a nmst satisfy the following equation:

r [ 2 21
(3.13) ddP = cos - sini - s2 2+n (1-ja )2 0

L'1 as + n s1u

We may easily express V/ in terms of n and a s

a1 - + n2 (i-a• )2] 2

(3.14) tan ?P = a 5 [ -2 (

The right hand side of equation (3.14) is a monotonically decreasing

function in the interval 0 < a < 1 for all n. The truth of this statement

is suggested by Fig. 2 and can be proved by differentiating (3.14) with respect

to as . Therefore a can be found numerically for the directions of observation

0 _< * <.90. Those values corresponding to the interval 900 _< < 1800 and

-1 <a <0 are obtained by the symmetry requirement. Now the surface wave far

field may be written as
1

ra2 [i+2[ ~2(1_c ]2)J F 2 1 22
(3.15) fs ink - a - 2(i-a)] [i_ + 2 (1-• -)21 i [kpP(, n,a s)-l

-ni2sk P + 2yn +hn(1-a 2)

-n k (1-a12) (y + h)
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where a is a function of ?P as indicated by (3.14). The electric and magnetics

field components of the far-zone surface wave may be obtained by substituting

(3.15) into (2.4) and (2.5). However, in order to understand the power flow

of the surface wave far field, it is desirable to use the cylindrical co-

ordinates (p,4i,y). We first write down the components of fs

A A A
(3.16) f sz = f5 cos ? p- f sin* ?P

Substituting (3.16) into (2.3) yields

(3.17) E = 1 [-n k(l-ad2 ) sinpf.] + [-nk (l1-2) cos ?P fs

+ [- kPsin*f -8 k 7 cos P f

2 c) 2 .. )2 n2k2 (i._s)2 copfJ

(3.18) 1 ^( [k P sin ?P f + ) Cos ?P f - noo

+ • [n2_2 (1- 2 )2 sin 7P f - k2P2 sin ?P f - k2P•-•cos V/ f]

F..in cos f2(1-_ -si 6P i

+y L k2 (1-a2)P co 7 + i n k ) 2 i 7P f
5 ý 3 s2

I
where all terms of higher order than p-2 have been neglected. The average

Poynting vector is

** A
(319 f* Re(-xR (.H.

+ iRe (E H -E H ) I+ ~Re (EI. 1,
y P P y P
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Lengthy but straightforward substitutions into the above equation show that

the * and y components vanish and give the expression for the p component

(PIfSI [1 + 2n (,a2) 2 +[1-U2+ 2l_?221(3.20), (Pav p = W f-(l ) 2 +2 n2  s + +

where f is given in (3.15).
5

Integrating (3.20) with respect to y gives the pattern function for the

total surface wave power.

1 n(l-a)2 + [12n2 (1-a2)] 2+[1-+n2(1_2)2]
(3a (av ~P 8~ ± 7cwPa + [1 + 2n2(lca2)] [,_a 2 +n 2 (1-a2) 2J

0

exp [-2n k (1lca)h]

This is a function of * through equation (3.14).

4. Discussions

Both the phase and amplitude of the excited surface wave found in the

last section are dependent upon the direction of observation. The surface wave

amplitude shows the typical exponential decay away from the reactive surface.

Notice, however, that the exponential decay factor also depends upon the di-

rection of observation. Because the direction of observation is approximately

constant in any fixed small region far away from the source, the three di-

mensional surface wave may be regarded locally there as an oblique plane surface

wave. It is recalled that none of the anisotropic characteristics of the dipole-

excited surface wave are present in the two dimensional treatments where an



infinite line source is assumed2'3 or where the propagation of an oblique

plane surface wave is consideredI. In the case of a finite line source we

may expect to observe the two dimensional behavior at points close to the

line source; however, the three dimensional behavior should appear when the

distance from the source is large compared with the length of the source.

There must be a transition between the two dimensional and three dimensional

characteristics.

The surface wave phase pattern and the surface wave power pattern

have been computed numerically for different values of normalized surface

reactance n and h = 0. The phase curves using rectangular coordinates are

plotted in Figure 3 for 0 <_ < _ 900. Those corresponding to 90°< ?P _ 1800

may be obtained by the symmetry requirement. The phase curve for n = 0.1

is very close to unity. The surface wave power patterns using polar coordinates

are plotted in Figures 4 and 5 for a magnetic point dipole of unit strength.

The surface wave power density vanishes at ?P = 0 and 180 for all values of n.

It is interesting to notice that the surface wave power patterns for n = 0.1 and

0.5 are broadly directional with the maximum at ?P = 90 , while those for n = 5

and 10 are sharply directional with the maximum at an angle close to P- = 00

and 1800. This observation may lead to the conclusion that the surface wave

power pattern of a finite line source resembles that of a continuous array of

isotropic point sources for small values of n. However, a similar statement

is not. valid in the case of large values of n.

If frequency is very low, the limiting form of the wave equation and

boundary condition in our problem will be reduced to the same as those in
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Kelvin's ship wave problem.8,9 But we are interested in the fields above

the reactive plane, while the ship wave solution deals with the space below

-the water surface. Although the wave amplitude and phase in both problems

depend upon the angle of observation, we find one wave in all directions

but vanishing at 7P = 00 and 1800, while the ship wave consists of two

orthogonal waves and is ccrfined within a sector behind the ship.
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